non-abelian, soluble, monomial
Aliases: C33⋊3Q16, C32⋊2Dic12, C6.11S3≀C2, (C3×C6).12D12, C3⋊1(C32⋊Q16), C3⋊Dic3.16D6, C32⋊2C8.2S3, (C32×C6).17D4, C33⋊5Q8.1C2, C2.5(C32⋊2D12), (C3×C32⋊2C8).2C2, (C3×C3⋊Dic3).3C22, SmallGroup(432,590)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C3⋊Dic3 — C33⋊3Q16 |
C1 — C3 — C33 — C32×C6 — C3×C3⋊Dic3 — C33⋊5Q8 — C33⋊3Q16 |
C33 — C32×C6 — C3×C3⋊Dic3 — C33⋊3Q16 |
Generators and relations for C33⋊3Q16
G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, dad-1=eae-1=b, bc=cb, dbd-1=a-1, ebe-1=a, cd=dc, ece-1=c-1, ede-1=d-1 >
Subgroups: 464 in 72 conjugacy classes, 15 normal (13 characteristic)
C1, C2, C3, C3, C4, C6, C6, C8, Q8, C32, C32, Dic3, C12, Q16, C3×C6, C3×C6, C24, Dic6, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, Dic12, C32×C6, C32⋊2C8, C32⋊2Q8, C3×C3⋊Dic3, C3×C3⋊Dic3, C32⋊Q16, C3×C32⋊2C8, C33⋊5Q8, C33⋊3Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, D12, Dic12, S3≀C2, C32⋊Q16, C32⋊2D12, C33⋊3Q16
Character table of C33⋊3Q16
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 4 | 4 | 8 | 8 | 18 | 36 | 36 | 2 | 4 | 4 | 8 | 8 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ8 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ9 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ10 | 2 | -2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ11 | 2 | -2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | -2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | -√2 | √2 | √3 | -√3 | 0 | 0 | 0 | 0 | ζ87ζ3+ζ85ζ3+ζ85 | ζ83ζ3+ζ83+ζ8ζ3 | ζ87ζ32+ζ87+ζ85ζ32 | ζ83ζ32+ζ8ζ32+ζ8 | symplectic lifted from Dic12, Schur index 2 |
ρ13 | 2 | -2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | √2 | -√2 | -√3 | √3 | 0 | 0 | 0 | 0 | ζ83ζ32+ζ8ζ32+ζ8 | ζ87ζ32+ζ87+ζ85ζ32 | ζ83ζ3+ζ83+ζ8ζ3 | ζ87ζ3+ζ85ζ3+ζ85 | symplectic lifted from Dic12, Schur index 2 |
ρ14 | 2 | -2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | -√2 | √2 | -√3 | √3 | 0 | 0 | 0 | 0 | ζ83ζ3+ζ83+ζ8ζ3 | ζ87ζ3+ζ85ζ3+ζ85 | ζ83ζ32+ζ8ζ32+ζ8 | ζ87ζ32+ζ87+ζ85ζ32 | symplectic lifted from Dic12, Schur index 2 |
ρ15 | 2 | -2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | √2 | -√2 | √3 | -√3 | 0 | 0 | 0 | 0 | ζ87ζ32+ζ87+ζ85ζ32 | ζ83ζ32+ζ8ζ32+ζ8 | ζ87ζ3+ζ85ζ3+ζ85 | ζ83ζ3+ζ83+ζ8ζ3 | symplectic lifted from Dic12, Schur index 2 |
ρ16 | 4 | 4 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | -2 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 4 | -2 | 1 | -2 | 1 | 0 | -2 | 0 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 2 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | 4 | -2 | 1 | -2 | 1 | 0 | 2 | 0 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ20 | 4 | -4 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | -4 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -√3 | 0 | 0 | √3 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ21 | 4 | -4 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | -4 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | √3 | 0 | 0 | -√3 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ22 | 4 | -4 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | -4 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ23 | 4 | -4 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | -4 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ24 | 8 | 8 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊2D12 |
ρ25 | 8 | 8 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | 0 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊2D12 |
ρ26 | 8 | -8 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | 0 | 4 | -2 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ27 | 8 | -8 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 35 25)(3 27 37)(5 39 29)(7 31 33)(9 43 17)(11 19 45)(13 47 21)(15 23 41)
(2 26 36)(4 38 28)(6 30 40)(8 34 32)(10 18 44)(12 46 20)(14 22 48)(16 42 24)
(1 25 35)(2 26 36)(3 27 37)(4 28 38)(5 29 39)(6 30 40)(7 31 33)(8 32 34)(9 43 17)(10 44 18)(11 45 19)(12 46 20)(13 47 21)(14 48 22)(15 41 23)(16 42 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 12 5 16)(2 11 6 15)(3 10 7 14)(4 9 8 13)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(33 48 37 44)(34 47 38 43)(35 46 39 42)(36 45 40 41)
G:=sub<Sym(48)| (1,35,25)(3,27,37)(5,39,29)(7,31,33)(9,43,17)(11,19,45)(13,47,21)(15,23,41), (2,26,36)(4,38,28)(6,30,40)(8,34,32)(10,18,44)(12,46,20)(14,22,48)(16,42,24), (1,25,35)(2,26,36)(3,27,37)(4,28,38)(5,29,39)(6,30,40)(7,31,33)(8,32,34)(9,43,17)(10,44,18)(11,45,19)(12,46,20)(13,47,21)(14,48,22)(15,41,23)(16,42,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,12,5,16)(2,11,6,15)(3,10,7,14)(4,9,8,13)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41)>;
G:=Group( (1,35,25)(3,27,37)(5,39,29)(7,31,33)(9,43,17)(11,19,45)(13,47,21)(15,23,41), (2,26,36)(4,38,28)(6,30,40)(8,34,32)(10,18,44)(12,46,20)(14,22,48)(16,42,24), (1,25,35)(2,26,36)(3,27,37)(4,28,38)(5,29,39)(6,30,40)(7,31,33)(8,32,34)(9,43,17)(10,44,18)(11,45,19)(12,46,20)(13,47,21)(14,48,22)(15,41,23)(16,42,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,12,5,16)(2,11,6,15)(3,10,7,14)(4,9,8,13)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41) );
G=PermutationGroup([[(1,35,25),(3,27,37),(5,39,29),(7,31,33),(9,43,17),(11,19,45),(13,47,21),(15,23,41)], [(2,26,36),(4,38,28),(6,30,40),(8,34,32),(10,18,44),(12,46,20),(14,22,48),(16,42,24)], [(1,25,35),(2,26,36),(3,27,37),(4,28,38),(5,29,39),(6,30,40),(7,31,33),(8,32,34),(9,43,17),(10,44,18),(11,45,19),(12,46,20),(13,47,21),(14,48,22),(15,41,23),(16,42,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,12,5,16),(2,11,6,15),(3,10,7,14),(4,9,8,13),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(33,48,37,44),(34,47,38,43),(35,46,39,42),(36,45,40,41)]])
Matrix representation of C33⋊3Q16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 72 | 1 | 72 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 72 | 1 | 72 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
23 | 68 | 0 | 0 | 0 | 0 |
5 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
18 | 53 | 0 | 0 | 0 | 0 |
71 | 55 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,1,0,72,0,0,72,72,1,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0,0,0,72,72,1,1,0,0,1,0,72,0],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[23,5,0,0,0,0,68,18,0,0,0,0,0,0,0,0,1,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,1,0,0],[18,71,0,0,0,0,53,55,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C33⋊3Q16 in GAP, Magma, Sage, TeX
C_3^3\rtimes_3Q_{16}
% in TeX
G:=Group("C3^3:3Q16");
// GroupNames label
G:=SmallGroup(432,590);
// by ID
G=gap.SmallGroup(432,590);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,56,85,92,254,58,1684,1691,298,677,348,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=b,b*c=c*b,d*b*d^-1=a^-1,e*b*e^-1=a,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations
Export